Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(1): e9707, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620411

ABSTRACT

The balance of pollination competition and facilitation among co-flowering plants and abiotic resource availability can modify plant species and individual reproduction. Floral resource succession and spatial heterogeneity modulate plant-pollinator interactions across ecological scales (individual plant, local assemblage, and interaction network of agroecological infrastructure across the farm). Intraspecific variation in flowering phenology can modulate the precise level of spatio-temporal heterogeneity in floral resources, pollen donor density, and pollinator interactions that a plant individual is exposed to, thereby affecting reproduction. We tested how abiotic resources and multi-scale plant-pollinator interactions affected individual plant seed set modulated by intraspecific variation in flowering phenology and spatio-temporal floral heterogeneity arising from agroecological infrastructure. We transplanted two focal insect-pollinated plant species (Cyanus segetum and Centaurea jacea, n = 288) into agroecological infrastructure (10 sown wildflower and six legume-grass strips) across a farm-scale experiment (125 ha). We applied an individual-based phenologically explicit approach to match precisely the flowering period of plant individuals to the concomitant level of spatio-temporal heterogeneity in plant-pollinator interactions, potential pollen donors, floral resources, and abiotic conditions (temperature, water, and nitrogen). Individual plant attractiveness, assemblage floral density, and conspecific pollen donor density (C. jacea) improved seed set. Network linkage density increased focal species seed set and modified the effect of local assemblage richness and abundance on C. segetum. Mutual dependence on pollinators in networks increased C. segetum seed set, while C. jacea seed set was greatest where both specialization on pollinators and mutual dependence was high. Abiotic conditions were of little or no importance to seed set. Intra- and interspecific plant-pollinator interactions respond to spatio-temporal heterogeneity arising from agroecological management affecting wild plant species reproduction. The interplay of pollinator interactions within and between ecological scales affecting seed set implies a co-occurrence of pollinator-mediated facilitative and competitive interactions among plant species and individuals.


L'équilibre des relations de compétition et de facilitation entre plantes pour la pollinisation et la disponibilité des ressources abiotiques affectent le succès reproducteur des espèces et des individus de plantes. La succession temporelle et l'hétérogénéité spatiale des ressources florales modifient les interactions plantes­pollinisateurs à différentes échelles écologiques (individu végétal, assemblage plantes­pollinisateurs local, réseau d'interactions des infrastructures écologiques à travers la ferme). Les variations intraspécifiques de phénologie de floraison peuvent moduler le succès reproducteur individuel en déterminant le niveau d'hétérogénéité spatio­temporelle de densité de donneurs de pollen, des interactions plantes­pollinisateurs et des ressources florales auxquelles un individu de plante est exposé. Nous avons mené une expérimentation pour tester comment la production de graines des plantes sauvages est affectée par les interactions plantes­pollinisateurs à différentes échelles écologiques, ces interactions étant modulées par la phénologie florale et l'hétérogénéité spatio­temporelle des ressources florales (découlant des infrastructures agroécologiques). Nous avons transplanté 144 individus de deux espèces végétales entomophiles (Cyanus segetum et Centaurea jacea) dans des infrastructures agroécologiques (10 bandes fleuries et six bandes enherbées semées) d'un domaine agroécologique expérimental (125 ha). Ces espèces à phénologie de floraison contrastée présentent toutes deux une longue période de floraison avec des variations intraspécifiques qui déterminent l'exposition des individus aux interactions plantes­pollinisateurs et aux conditions météorologiques. Nous avons appliqué une approche phénologiquement explicite centrée sur l'individu végétal, de manière à relier précisément la période de floraison de chaque individu aux niveaux correspondants d'hétérogénéité spatio­temporelle des interactions plantes­pollinisateurs, des densités de donneurs de pollen potentiels, des ressources florales (aux échelles de l'individu végétal, de l'assemblage local et du réseau d'interactions des infrastructures écologiques à travers la ferme) et des conditions abiotiques (température, précipitations, azote). L'attractivité individuelle (offre florale et taux de visite par les pollinisateurs) ainsi que la densité florale (toutes espèces) dans l'assemblage interspécifique local ont affecté positivement la production individuelle de graines des deux espèces végétales. Celle de C. jacea augmentait aussi directement avec la densité d'individus conspécifiques fleuris dans l'assemblage local. La densité de couplage du réseau a affecté positivement la production individuelle de graines des deux espèces et a influencé celle de C. segetum en modifiant l'effet de l'assemblage local (richesse et densité florales, richesse spécifique de pollinisateurs potentiels) sur le nombre de graines par individu. Le succès reproducteur individuel de C. segetum augmentait aussi avec le niveau de dépendance mutuelle entre l'espèce et ses pollinisateurs dans le réseau. Chez C. jacea, la production de graines individuelle était maximisée quand à la fois le niveau de spécialisation de C. jacea sur ses pollinisateurs dans le réseau et sa dépendance mutuelle à ses pollinisateurs étaient élevés. Les conditions abiotiques n'ont eu qu'un impact limité voire inexistant sur le succès reproducteur. Nos résultats montrent comment l'équilibre des interactions plantes­pollinisateurs entre espèces et individus, peut répondre à l'hétérogénéité spatio­temporelle liée à la gestion agroécologique de différentes façons qui affectent la reproduction des plantes sauvages. Les relations entre les interactions plantes­pollinisateurs et la production individuelle de graines des plantes focales se déclinent entre et au sein de différentes échelles écologiques, de l'individu à la communauté, impliquant une co­occurrence d'interactions facilitatrices et compétitrices entre espèces et individus de plantes via les pollinisateurs.

2.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397002

ABSTRACT

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Subject(s)
Ecosystem , Soil , Biodiversity , Soil Microbiology , Biota
3.
Ecol Evol ; 12(4): e8786, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386880

ABSTRACT

Cattle grazing profoundly affects abiotic and biotic characteristics of ecosystems. While most research has been performed on grasslands, the effect of large managed ungulates on forest ecosystems has largely been neglected. Compared to a baseline seminatural state, we investigated how long-term cattle grazing of birch forest patches affected the abiotic state and the ecological community (microbes and invertebrates) of the soil subsystem. Grazing strongly modified the soil abiotic environment by increasing phosphorus content, pH, and bulk density, while reducing the C:N ratio. The reduced C:N ratio was strongly associated with a lower microbial biomass, mainly caused by a reduction of fungal biomass. This was linked to a decrease in fungivorous nematode abundance and the nematode channel index, indicating a relative uplift in the importance of the bacterial energy-channel in the nematode assemblages. Cattle grazing highly modified invertebrate community composition producing distinct assemblages from the seminatural situation. Richness and abundance of microarthropods was consistently reduced by grazing (excepting collembolan richness) and grazing-associated changes in soil pH, Olsen P, and reduced soil pore volume (bulk density) limiting niche space and refuge from physical disturbance. Anecic earthworm species predominated in grazed patches, but were absent from ungrazed forest, and may benefit from manure inputs, while their deep vertical burrowing behavior protects them from physical disturbance. Perturbation of birch forest habitat by long-term ungulate grazing profoundly modified soil biodiversity, either directly through increased physical disturbance and manure input or indirectly by modifying soil abiotic conditions. Comparative analyses revealed the ecosystem engineering potential of large ungulate grazers in forest systems through major shifts in the composition and structure of microbial and invertebrate assemblages, including the potential for reduced energy flow through the fungal decomposition pathway. The precise consequences for species trophic interactions and biodiversity-ecosystem function relationships remain to be established, however.

5.
Nature ; 596(7872): 351-352, 2021 08.
Article in English | MEDLINE | ID: mdl-34349271
6.
Nat Ecol Evol ; 5(10): 1453-1461, 2021 10.
Article in English | MEDLINE | ID: mdl-34400826

ABSTRACT

Pollinator decline has attracted global attention and substantial efforts are underway to respond through national pollinator strategies and action plans. These policy responses require clarity on what is driving pollinator decline and what risks it generates for society in different parts of the world. Using a formal expert elicitation process, we evaluated the relative regional and global importance of eight drivers of pollinator decline and ten consequent risks to human well-being. Our results indicate that global policy responses should focus on reducing pressure from changes in land cover and configuration, land management and pesticides, as these were considered very important drivers in most regions. We quantify how the importance of drivers and risks from pollinator decline, differ among regions. For example, losing access to managed pollinators was considered a serious risk only for people in North America, whereas yield instability in pollinator-dependent crops was classed as a serious or high risk in four regions but only a moderate risk in Europe and North America. Overall, perceived risks were substantially higher in the Global South. Despite extensive research on pollinator decline, our analysis reveals considerable scientific uncertainty about what this means for human society.


Subject(s)
Pesticides , Pollination , Crops, Agricultural , Europe , Humans , North America
7.
Trends Ecol Evol ; 36(7): 623-636, 2021 07.
Article in English | MEDLINE | ID: mdl-33865639

ABSTRACT

Multiple global change pressures, and their interplay, cause plant-pollinator extinctions and modify species assemblages and interactions. This may alter the risks of pathogen host shifts, intra- or interspecific pathogen spread, and emergence of novel population or community epidemics. Flowers are hubs for pathogen transmission. Consequently, the structure of plant-pollinator interaction networks may be pivotal in pathogen host shifts and modulating disease dynamics. Traits of plants, pollinators, and pathogens may also govern the interspecific spread of pathogens. Pathogen spillover-spillback between managed and wild pollinators risks driving the evolution of virulence and community epidemics. Understanding this interplay between host-pathogen dynamics and global change will be crucial to predicting impacts on pollinators and pollination underpinning ecosystems and human wellbeing.


Subject(s)
Ecosystem , Epidemics , Flowers , Humans , Plants , Pollination
8.
Proc Biol Sci ; 288(1948): 20210032, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33823665

ABSTRACT

Ecosystems face multiple, potentially interacting, anthropogenic pressures that can modify biodiversity and ecosystem functioning. Using a bryophyte-microarthropod microecosystem we tested the combined effects of habitat loss, episodic heat-shocks and an introduced non-native apex predator on ecosystem function (chlorophyll fluorescence as an indicator of photosystem II function) and microarthropod communities (abundance and body size). The photosynthetic function was degraded by the sequence of heat-shock episodes, but unaffected by microecosystem patch size or top-down pressure from the introduced predator. In small microecosystem patches without the non-native predator, Acari abundance decreased with heat-shock frequency, while Collembola abundance increased. These trends disappeared in larger microecosystem patches or when predators were introduced, although Acari abundance was lower in large patches that underwent heat-shocks and were exposed to the predator. Mean assemblage body length (Collembola) was reduced independently in small microecosystem patches and with greater heat-shock frequency. Our experimental simulation of episodic heatwaves, habitat loss and non-native predation pressure in microecosystems produced evidence of individual and potentially synergistic and antagonistic effects on ecosystem function and microarthropod communities. Such complex outcomes of interactions between multiple stressors need to be considered when assessing anthropogenic risks for biota and ecosystem functioning.


Subject(s)
Arthropods , Ecosystem , Animals , Biodiversity , Food Chain , Hot Temperature , Predatory Behavior
9.
Sci Total Environ ; 695: 133833, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31419678

ABSTRACT

Worldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies (4G, 5G) or emitted from power lines, represent an additional and growing threat to pollinators. A lack of high quality scientific studies means that knowledge of the risk to pollinators from anthropogenic EMR is either inconclusive, unresolved, or only partly established. A handful of studies provide evidence that ALAN can alter pollinator communities, pollination and fruit set. Laboratory experiments provide some, albeit variable, evidence that the honey bee Apis mellifera and other invertebrates can detect EMR, potentially using it for orientation or navigation, but they do not provide evidence that AREMR affects insect behaviour in ecosystems. Scientifically robust evidence of AREMR impacts on abundance or diversity of pollinators (or other invertebrates) are limited to a single study reporting positive and negative effects depending on the pollinator group and geographical location. Therefore, whether anthropogenic EMR (ALAN or AREMR) poses a significant threat to insect pollinators and the benefits they provide to ecosystems and humanity remains to be established.

10.
Ecol Lett ; 21(12): 1821-1832, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30223295

ABSTRACT

Understanding spatial variation in the structure and stability of plant-pollinator networks, and their relationship with anthropogenic drivers, is key for maintaining pollination services and mitigating declines. Constructing sufficient networks to examine patterns over large spatial scales remains challenging. Using biological records (citizen science), we constructed potential plant-pollinator networks at 10 km resolution across Great Britain, comprising all potential interactions inferred from recorded floral visitation and species co-occurrence. We calculated network metrics (species richness, connectance, pollinator and plant generality) and adapted existing methods to assess robustness to sequences of simulated plant extinctions across multiple networks. We found positive relationships between agricultural land cover and both pollinator generality and robustness to extinctions under several extinction scenarios. Increased robustness was attributable to changes in plant community composition (fewer extinction-prone species) and network structure (increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes can confer robustness to potential future perturbations on plant-pollinator networks.


Subject(s)
Agriculture , Ecosystem , Plants , Pollination , United Kingdom
11.
J Chem Ecol ; 44(2): 198-208, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29392532

ABSTRACT

Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.


Subject(s)
Glomeromycota/physiology , Metabolome , Mycorrhizae/physiology , Senecio/physiology , Symbiosis , Biomass , Plant Roots/physiology , Plant Shoots/physiology , Pyrrolizidine Alkaloids/metabolism
12.
Nat Ecol Evol ; 2(1): 16-25, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29242585

ABSTRACT

Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making.


Subject(s)
Bees , Diptera , Introduced Species , Pollination , Animals , Biodiversity , Biological Evolution , Ecosystem , Risk
13.
Ecol Evol ; 7(16): 6507-6518, 2017 08.
Article in English | MEDLINE | ID: mdl-28861252

ABSTRACT

Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy (Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica. These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and implementing conservation management for plants which are comparatively rare in the landscape.

14.
Ecol Lett ; 20(5): 673-689, 2017 05.
Article in English | MEDLINE | ID: mdl-28346980

ABSTRACT

Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice.


Subject(s)
Agriculture , Biota , Conservation of Natural Resources , Crops, Agricultural/physiology , Insecta/physiology , Pollination , Animals
15.
Nature ; 540(7632): 220-229, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27894123

ABSTRACT

Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.


Subject(s)
Conservation of Natural Resources/trends , Crop Production , Environmental Policy/trends , Insecta/physiology , Pollination , Vertebrates/physiology , Animals , Bees/physiology , Butterflies/physiology , Climate Change , Crop Production/economics , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Ecosystem , Humans , Introduced Species , Pesticides/adverse effects , Pesticides/toxicity , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Population Dynamics
16.
Front Plant Sci ; 7: 837, 2016.
Article in English | MEDLINE | ID: mdl-27379129

ABSTRACT

Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enrichment would increase the amount (biomass) and quality (C:N ratio) of crop plant resources for above- and belowground herbivore species. In a controlled environment facility, we conducted a microcosm experiment using the large raspberry aphid (Amphorophora idaei), the root feeding larvae of the vine weevil (Otiorhynchus sulcatus), and the raspberry (Rubus idaeus) host-plant. There were four herbivore treatments (control, aphid only, weevil only and a combination of both herbivores) and an ambient (aCO2) or elevated (eCO2) CO2 treatment (390 versus 650 ± 50 µmol/mol) assigned to two raspberry cultivars (cv Glen Ample or Glen Clova) varying in resistance to aphid herbivory. Contrary to our predictions, eCO2 did not increase crop biomass or the C:N ratio of the plant tissues, nor affect herbivore abundance either directly or via the host-plant. Root herbivory reduced belowground crop biomass under aCO2 but not eCO2, suggesting that crops could tolerate attack in a CO2 enriched environment. Root herbivory also increased the C:N ratio in leaf tissue at eCO2, potentially due to decreased N uptake indicated by lower N concentrations found in the roots. Root herbivory greatly increased root C concentrations under both CO2 treatments. Our findings confirm that responses of crop biomass and biochemistry to climate change need examining within the context of herbivory, as biotic interactions appear as important as direct effects of eCO2 on crop productivity.

17.
Sci Total Environ ; 572: 1586-1600, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27156120

ABSTRACT

Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1×1km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.

18.
J Anim Ecol ; 85(4): 1087-97, 2016 07.
Article in English | MEDLINE | ID: mdl-26996740

ABSTRACT

Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity.


Subject(s)
Aphids/physiology , Coleoptera/physiology , Food Chain , Introduced Species , Animals , Aphids/growth & development , Coleoptera/growth & development , England , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Population Dynamics , Predatory Behavior
19.
Proc Biol Sci ; 282(1818): 20151821, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26511042

ABSTRACT

A summary is provided of recent advances in the natural science evidence base concerning the effects of neonicotinoid insecticides on insect pollinators in a format (a 'restatement') intended to be accessible to informed but not expert policymakers and stakeholders. Important new studies have been published since our recent review of this field (Godfray et al. 2014 Proc. R. Soc. B 281, 20140558. (doi:10.1098/rspb.2014.0558)) and the subject continues to be an area of very active research and high policy relevance.


Subject(s)
Bees/drug effects , Insecticides/toxicity , Animals , European Union , Insecta/drug effects , Pollination
20.
J Chem Ecol ; 40(10): 1110-4, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25273846

ABSTRACT

Research into the impact of atmospheric change on predator-prey interactions has mainly focused on density dependent responses and trophic linkages. As yet, the chemical ecology underpinning predator-prey interactions has received little attention in environmental change research. Group living animals have evolved behavioral mechanisms to escape predation, including chemical alarm signalling. Chemical alarm signalling between conspecific prey could be susceptible to environmental change if the physiology and behavior of these organisms are affected by changes in dietary quality resulting from environmental change. Using Rubus idaeus plants, we show that elevated concentrations of atmospheric CO2 (eCO2) severely impaired escape responses of the aphid Amphorophora idaei to predation by ladybird larvae (Harmonia axyridis). Escape responses to ladybirds was reduced by >50% after aphids had been reared on plants grown under eCO2. This behavioral response was rapidly induced, occurring within 24 h of being transferred to plants grown at eCO2 and, once induced, persisted even after aphids were transferred to plants grown at ambient CO2. Escape responses were impaired due to reduced sensitivity to aphid alarm pheromone, (E)-ß-farnesene, via an undefined plant-mediated mechanism. Aphid abundance often increases under eCO2, however, reduced efficacy of conspecific signalling may increase aphid vulnerability to predation, highlighting the need to study the chemical ecology of predator-prey interactions under environmental change.


Subject(s)
Aphids/physiology , Carbon Dioxide/metabolism , Coleoptera/physiology , Escape Reaction , Predatory Behavior , Animals , Carbon Footprint , Larva/physiology , Pheromones/metabolism , Plant Physiological Phenomena , Plants/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...